Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Immunol ; 13: 1027122, 2022.
Article in English | MEDLINE | ID: covidwho-2142033

ABSTRACT

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic is caused by the highly infectious Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). There is an urgent need for biomarkers that will help in better stratification of patients and contribute to personalized treatments. We performed targeted proteomics using the Olink platform and systematically investigated protein concentrations in 350 hospitalized COVID-19 patients, 186 post-COVID-19 individuals, and 61 healthy individuals from 3 independent cohorts. Results revealed a signature of acute SARS-CoV-2 infection, which is represented by inflammatory biomarkers, chemokines and complement-related factors. Furthermore, the circulating proteome is still significantly affected in post-COVID-19 samples several weeks after infection. Post-COVID-19 individuals are characterized by upregulation of mediators of the tumor necrosis (TNF)-α signaling pathways and proteins related to transforming growth factor (TGF)-ß. In addition, the circulating proteome is able to differentiate between patients with different COVID-19 disease severities, and is associated with the time after infection. These results provide important insights into changes induced by SARS-CoV-2 infection at the proteomic level by integrating several cohorts to obtain a large disease spectrum, including variation in disease severity and time after infection. These findings could guide the development of host-directed therapy in COVID-19.


Subject(s)
COVID-19 , Proteomics , Humans , Proteome , SARS-CoV-2 , Biomarkers
2.
PLoS One ; 17(11): e0276929, 2022.
Article in English | MEDLINE | ID: covidwho-2098767

ABSTRACT

Mortality due to COVID-19 is not increased in immunosuppressed individuals after liver transplantation (OLT) compared to individuals without immunosuppression. Data on long-term protective immunity against SARS-CoV-2 in immunosuppressed convalescents, is limited. We prospectively measured immune responses against SARS-CoV-2 by quantifying antibodies against 4 different antigens (spike protein 1 and 2, receptor binding domain, nucleocapsid) and T cell responses by IFN-γ ELISPOT against 4 antigens (membrane, nucleocapsid, spike protein 1 and 2) in 24 OLT convalescents with immunosuppressive therapy longitudinally in the first year after COVID-19 including a booster vaccination in comparison to a matched cohort of non-immunosuppressed convalescents (non-IS-Con). Pre-pandemic OLT samples were retrieved from our prospective OLT biorepository (n = 16). No relevant T cell reactivity or immunoglobulin G (IgG) against SARS-CoV-2 were detectable in pre-pandemic samples of OLT recipients despite reactivity against endemic corona-viruses. OLT convalescents had a lower prevalence of IgG against nucleocapsid (54% vs. 90%) but not against spike protein domains (98-100% vs. 100%) after vaccination in the second half-year after COVID-19 compared to non-IS-Con. Also, concentrations of anti-nucleocapsid IgG were lower in OLT convalescents than in non-IS-Con. Concentration of IgG against spike protein domains was significantly increased by a booster vaccination in OLT convalescents. But concentration of IgG against two of three spike protein domains remains slightly lower compared to non-IS-Con finally. However, none of these differences was mirrored by the cellular immunity against SARS-CoV-2 that remained stable during the first year after COVID-19 and was not further stimulated by a corona vaccination in OLT convalescents. In conclusion, despite lower concentrations of anti-SARS-CoV-2 IgG in OLT convalescents anti-SARS-CoV-2 cellular immunity was as robust as in non-IS-Con.


Subject(s)
COVID-19 , Liver Transplantation , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Prospective Studies , Antibodies, Viral , Immunoglobulin G , Immunity, Cellular , Immunity, Humoral , Vaccination , Transplant Recipients
3.
J Clin Invest ; 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2098125

ABSTRACT

BACKGROUND: Results of many randomized trials on COVID-19 convalescent plasma (CCP) have been reported but information on long-term outcome after CCP treatment is limited. The objectives of this extended observation of the randomized CAPSID trial are to assess long-term outcome and disease burden in patients initially treated with or without CCP. METHODS: Of 105 randomized patients, 50 participated in the extended observation. Quality of life (QoL) was assessed by questionnaires and a structured interview. CCP-donors (n=113) with asymptomatic to moderate COVID-19 were included as a reference group. RESULTS: The median follow-up of patients was 396 days, the estimated 1-year survival was 78.7% in the CCP and 60.2% in the control group (p=0.08). The subgroup treated with a higher cumulative amount of neutralizing antibodies showed a better 1-year survival compared to the control group (91.5% versus 60.2%; p=0.01). Medical events and QoL assessments showed a consistent trend for better results in the CCP group without reaching statistical significance. There was no difference in the increase of neutralizing antibodies after vaccination between CCP and the control group. CONCLUSION: The trial demonstrated a trend towards better outcome in the CCP group without reaching statistical significance. A pre-defined subgroup analysis showed a significant better outcome (long-term survival; time to discharge from ICU and time to hospital discharge) among those who received a higher amount of neutralizing antibodies compared to the control group. A substantial long-term disease burden remains after severe COVID-19. TRIAL REGISTRATION: EudraCT number 2020-001310-38FUNDING. Bundesministerium für Gesundheit (German Federal Ministry of Health): ZMVI1-2520COR802/ZMI1-2521COR802.

4.
Front Bioeng Biotechnol ; 10: 867042, 2022.
Article in English | MEDLINE | ID: covidwho-1817928

ABSTRACT

Objectives: Evaluation of the feasibility of SARS-CoV-2-specific T cell manufacturing for adoptive T cell transfer in COVID-19 patients at risk to develop severe disease. Methods: Antiviral SARS-CoV-2-specific T cells were detected in blood of convalescent COVID-19 patients following stimulation with PepTivator SARS-CoV-2 Select using Interferon-gamma Enzyme-Linked Immunospot (IFN-γ ELISpot), SARS-CoV-2 T Cell Analysis Kit (Whole Blood) and Cytokine Secretion Assay (CSA) and were characterized with respect to memory phenotype, activation state and cytotoxic potential by multicolor flow cytometry, quantitative real-time PCR and multiplex analyses. Clinical-grade SARS-CoV-2-specific T cell products were generated by stimulation with MACS GMP PepTivator SARS-CoV-2 Select using CliniMACS Prodigy and CliniMACS Cytokine Capture System (IFN-gamma) (CCS). Functionality of enriched T cells was investigated in cytotoxicity assays and by multiplex analysis of secreted cytotoxic molecules upon target recognition. Results: Donor screening via IFN-γ ELISpot allows for pre-selection of potential donors for generation of SARS-CoV-2-specific T cells. Antiviral T cells reactive against PepTivator SARS-CoV-2 Select could be magnetically enriched from peripheral blood of convalescent COVID-19 patients by small-scale CSA resembling the clinical-grade CCS manufacturing process and showed an activated and cytotoxic T cell phenotype. Four clinical-grade SARS-CoV-2-specific T cell products were successfully generated with sufficient cell numbers and purities comparable to those observed in donor pretesting via CSA. The T cells in the generated products were shown to be capable to replicate, specifically recognize and kill target cells in vitro and secrete cytotoxic molecules upon target recognition. Cell viability, total CD3+ cell number, proliferative capacity and cytotoxic potential remained stable throughout storage of up to 72 h after end of leukapheresis. Conclusion: Clinical-grade SARS-CoV-2-specific T cells are functional, have proliferative capacity and target-specific cytotoxic potential. Their function and phenotype remain stable for several days after enrichment. The adoptive transfer of partially matched, viable human SARS-CoV-2-specific T lymphocytes collected from convalescent individuals may provide the opportunity to support the immune system of COVID-19 patients at risk for severe disease.

5.
Frontiers in medicine ; 8, 2021.
Article in English | EuropePMC | ID: covidwho-1564209

ABSTRACT

Since its declaration as a pandemic in March 2020, SARS-CoV-2 has infected more than 217 million people worldwide and despite mild disease in the majority of the cases, more than 4.5 million cases of COVID-19-associated death have been reported as of September 2021. The question whether recovery from COVID-19 results in prevention of reinfection can be answered with a “no” since cases of reinfections have been reported. The more important question is whether during SARS-CoV-2 infection, a protective immunity is built and maintained afterwards in a way which protects from possibly severe courses of disease in case of a reinfection. A similar question arises with respect to vaccination: as of September 2021, globally, more than 5.2 billion doses of vaccines have been administered. Therefore, it is of utmost importance to study the cellular and humoral immunity toward SARS-CoV-2 in a longitudinal manner. In this study, reconvalescent COVID-19 patients have been followed up for more than 1 year after SARS-CoV-2 infection to characterize in detail the long-term humoral as well as cellular immunity. Both SARS-CoV-2-specific T cells and antibodies could be detected for a period of more than 1 year after infection, indicating that the immune protection established during initial infection is maintained and might possibly protect from severe disease in case of reinfection or infection with novel emerging variants. Moreover, these data demonstrate the opportunity for immunotherapy of hospitalized COVID-19 patients via adoptive transfer of functional antiviral T cells isolated from reconvalescent individuals.

6.
Clin Infect Dis ; 73(11): 2000-2008, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1559548

ABSTRACT

BACKGROUND: Vaccine-induced neutralizing antibodies are key in combating the coronavirus disease 2019 (COVID-19) pandemic. However, delays of boost immunization due to limited availability of vaccines may leave individuals vulnerable to infection and prolonged or severe disease courses. The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC)-B.1.1.7 (United Kingdom), B.1.351 (South Africa), and P.1 (Brazil)-may exacerbate this issue, as the latter two are able to evade control by antibodies. METHODS: We assessed humoral and T-cell responses against SARS-CoV-2 wild-type (WT), VOC, and endemic human coronaviruses (hCoVs) that were induced after single and double vaccination with BNT162b2. RESULTS: Despite readily detectable immunoglobulin G (IgG) against the receptor-binding domain of the SARS-CoV-2 S protein at day 14 after a single vaccination, inhibition of SARS-CoV-2 S-driven host cell entry was weak and particularly low for the B.1.351 variant. Frequencies of SARS-CoV-2 WT and VOC-specific T cells were low in many vaccinees after application of a single dose and influenced by immunity against endemic hCoV. The second vaccination significantly boosted T-cell frequencies reactive for WT and B.1.1.7 and B.1.351 variants. CONCLUSIONS: These results call into question whether neutralizing antibodies significantly contribute to protection against COVID-19 upon single vaccination and suggest that cellular immunity is central for the early defenses against COVID-19.


Subject(s)
BNT162 Vaccine/immunology , COVID-19 , Immunity, Cellular , Immunity, Humoral , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/prevention & control , Humans , Immunoglobulin G/blood , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination
7.
Front Immunol ; 12: 721738, 2021.
Article in English | MEDLINE | ID: covidwho-1378191

ABSTRACT

Here, we described the case of a B cell-deficient patient after CD19 CAR-T cell therapy for refractory B cell Non-Hodgkin Lymphoma with protracted coronavirus disease 2019 (COVID-19). For weeks, this patient only inefficiently contained the virus while convalescent plasma transfusion correlated with virus clearance. Interestingly, following convalescent plasma therapy natural killer cells matured and virus-specific T cells expanded, presumably allowing virus clearance and recovery from the disease. Our findings, thus, suggest that convalescent plasma therapy can activate cellular immune responses to clear SARS-CoV-2 infections. If confirmed in larger clinical studies, these data could be of general importance for the treatment of COVID-19 patients.


Subject(s)
B-Lymphocytes , COVID-19/immunology , COVID-19/therapy , Immunologic Deficiency Syndromes/immunology , Immunotherapy, Adoptive , Killer Cells, Natural/immunology , T-Lymphocytes/immunology , B-Lymphocytes/immunology , COVID-19/complications , Female , Humans , Immunization, Passive , Immunoglobulins, Intravenous , Immunologic Deficiency Syndromes/complications , Lymphocyte Activation , Lymphopoiesis , SARS-CoV-2 , Viral Load , COVID-19 Serotherapy
8.
Transfus Med Hemother ; 48(3): 137-147, 2021 May.
Article in English | MEDLINE | ID: covidwho-1201432

ABSTRACT

BACKGROUND: Convalescent plasma is one of the treatment options for COVID-19 which is currently being investigated in many clinical trials. Understanding of donor and product characteristics is important for optimization of convalescent plasma. METHODS: Patients who had recovered from CO-VID-19 were recruited as donors for COVID-19 convalescent plasma (CCP) for a randomized clinical trial of CCP for treatment of severe COVID-19 (CAPSID Trial). Titers of neutralizing antibodies were measured by a plaque-reduction neutralization test (PRNT). Correlation of antibody titers with host factors and evolution of neutralizing antibody titers over time in repeat donors were analysed. RESULTS: A series of 144 donors (41% females, 59% males; median age 40 years) underwent 319 plasmapheresis procedures providing a median collection volume of 850 mL and a mean number of 2.7 therapeutic units per plasmapheresis. The majority of donors had a mild or moderate course of COVID-19. The titers of neutralizing antibodies varied greatly between CCP donors (from <1:20 to >1:640). Donor factors (gender, age, ABO type, body weight) did not correlate significantly with the titer of neutralizing antibodies. We observed a significant positive correlation of neutralization titers with the number of reported COVID-19 symptoms and with the time from SARS-CoV-2 diagnosis to plasmapheresis. Neutralizing antibody levels were stable or increased over time in 58% of repeat CCP donors. Mean titers of neutralizing antibodies of first donation and last donation of repeat CCP donors did not differ significantly (1:86 at first compared to 1:87 at the last donation). There was a significant correlation of neutralizing antibodies measured by PRNT and anti-SARS-CoV-2 IgG and IgA antibodies which were measured by ELISA. CCP donations with an anti-SARS-CoV-2 IgG antibody content above the 25th percentile were substantially enriched for CCP donations with higher neutralizing antibody levels. CONCLUSION: We demonstrate the feasibility of collection of a large number of CCP products under a harmonized protocol for a randomized clinical trial. Titers of neutralizing antibodies were stable or increased over time in a subgroup of repeat donors. A history of higher number of COVID-19 symptoms and higher levels of anti-SARS-CoV-2 IgG and IgA antibodies in immunoassays can preselect donations with higher neutralizing capacity.

9.
Immunity ; 54(2): 340-354.e6, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1071479

ABSTRACT

Cellular and humoral immunity to SARS-CoV-2 is critical to control primary infection and correlates with severity of disease. The role of SARS-CoV-2-specific T cell immunity, its relationship to antibodies, and pre-existing immunity against endemic coronaviruses (huCoV), which has been hypothesized to be protective, were investigated in 82 healthy donors (HDs), 204 recovered (RCs), and 92 active COVID-19 patients (ACs). ACs had high amounts of anti-SARS-CoV-2 nucleocapsid and spike IgG but lymphopenia and overall reduced antiviral T cell responses due to the inflammatory milieu, expression of inhibitory molecules (PD-1, Tim-3) as well as effector caspase-3, -7, and -8 activity in T cells. SARS-CoV-2-specific T cell immunity conferred by polyfunctional, mainly interferon-γ-secreting CD4+ T cells remained stable throughout convalescence, whereas humoral responses declined. Immune responses toward huCoV in RCs with mild disease and strong cellular SARS-CoV-2 T cell reactivity imply a protective role of pre-existing immunity against huCoV.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunity, Cellular/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Humans , Immunity, Humoral/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Young Adult
10.
Cell Mol Immunol ; 18(4): 936-944, 2021 04.
Article in English | MEDLINE | ID: covidwho-899921

ABSTRACT

Neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into cells via surface-expressed angiotensin-converting enzyme 2 (ACE2). We used a surrogate virus neutralization test (sVNT) and SARS-CoV-2 S protein-pseudotyped vesicular stomatitis virus (VSV) vector-based neutralization assay (pVNT) to assess the degree to which serum antibodies from coronavirus disease 2019 (COVID-19) convalescent patients interfere with the binding of SARS-CoV-2 S to ACE2. Both tests revealed neutralizing anti-SARS-CoV-2 S antibodies in the sera of ~90% of mildly and 100% of severely affected COVID-19 convalescent patients. Importantly, sVNT and pVNT results correlated strongly with each other and to the levels of anti-SARS-CoV-2 S1 IgG and IgA antibodies. Moreover, levels of neutralizing antibodies correlated with the duration and severity of clinical symptoms but not with patient age. Compared to pVNT, sVNT is less sophisticated and does not require any biosafety labs. Since this assay is also much faster and cheaper, sVNT will not only be important for evaluating the prevalence of neutralizing antibodies in a population but also for identifying promising plasma donors for successful passive antibody therapy.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/blood , Cell Line , Convalescence , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Middle Aged , Neutralization Tests/methods
11.
EBioMedicine ; 57: 102885, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-633885

ABSTRACT

BACKGROUND: Elucidating the role of T cell responses in COVID-19 is of utmost importance to understand the clearance of SARS-CoV-2 infection. METHODS: 30 hospitalized COVID-19 patients and 60 age- and gender-matched healthy controls (HC) participated in this study. We used two comprehensive 11-colour flow cytometric panels conforming to Good Laboratory Practice and approved for clinical diagnostics. FINDINGS: Absolute numbers of lymphocyte subsets were differentially decreased in COVID-19 patients according to clinical severity. In severe disease (SD) patients, all lymphocyte subsets were reduced, whilst in mild disease (MD) NK, NKT and γδ T cells were at the level of HC. Additionally, we provide evidence of T cell activation in MD but not SD, when compared to HC. Follow up samples revealed a marked increase in effector T cells and memory subsets in convalescing but not in non-convalescing patients. INTERPRETATION: Our data suggest that activation and expansion of innate and adaptive lymphocytes play a major role in COVID-19. Additionally, recovery is associated with formation of T cell memory as suggested by the missing formation of effector and central memory T cells in SD but not in MD. Understanding T cell-responses in the context of clinical severity might serve as foundation to overcome the lack of effective anti-viral immune response in severely affected COVID-19 patients and can offer prognostic value as biomarker for disease outcome and control. FUNDING: Funded by State of Lower Saxony grant 14-76,103-184CORONA-11/20 and German Research Foundation, Excellence Strategy - EXC2155"RESIST"-Project ID39087428, and DFG-SFB900/3-Project ID158989968, grants SFB900-B3, SFB900-B8.


Subject(s)
Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Lymphocyte Activation/immunology , Pneumonia, Viral/immunology , Adult , Aged , Aged, 80 and over , Biomarkers , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , COVID-19 , Female , Humans , Immunologic Memory/immunology , Lymphocyte Count , Male , Middle Aged , Pandemics , Prognosis , SARS-CoV-2 , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL